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archetypal-package Finds the Archetypal Analysis of a Data Frame

Description

Performs archetypal analysis by using Principal Convex Hull Analysis (PCHA) under a full control
of all algorithmic parameters. It contains a set of functions for determining the initial solution,
the optimal algorithmic parameters and the optimal number of archetypes. Post run tools are also
available for the assessment of the derived solution.
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Compute Archetypal Analysis (AA)

The main function is archetypal which is a variant of PCHA algorithm, see [1], [2], suitable for R
language. It provides control to the entire set of involved parameters and has two main options:

1. initialrows = NULL, then a method from "projected_convexhull", "convexhull",
"partitioned_convexhul", "furthestsum", "outmost", "random" is used

2. initialrows = (a vector of kappas rows), then given rows form the initial solution for AA

This is the main function of the package, but extensive trials has shown that:

• AA may be very difficult to run if a random initial solution has been chosen
• for the same data set the final Sum of Squared Errors (SSE) may be much smaller if initial

solution is close to the final one
• even the quality of AA done is affected from the starting point

This is the reason why we have developed a whole set of methods for choosing initial solution for
the PCHA algorithm.

Find a time efficient initial approximation for AA

There are three functions that work with the Convex Hull (CH) of data set.

1. find_outmost_convexhull_points computes the CH of all points
2. find_outmost_projected_convexhull_points computes the CH for all possible combina-

tions of variables taken by npr (default=2)
3. find_outmost_partitioned_convexhull_points makes np partitions of data frame (de-

fualt=10), then computes CH for each partition and finally gives the CH of overall union

The most simple method for estimating an initial solution is find_outmost_points where we just
compute the outermost points, i.e. those that are the most frequent outermost for all available points.

The default method "FurthestSum" (FS) of PCHA (see [1], [2]) is used by find_furthestsum_points
which applies FS for nfurthest times (default=10) and then finds the most frequent points.

Of course "random" method is available for comparison reasons and that gives a random set of
kappas points as initial solution.

All methods give the number of rows for the input data frame as integers. Attention needed if your
data frame has row names which are integers but not identical to 1:dim(df)[1].

Find the optimal number of archetypes

For that task find_optimal_kappas is available which runs for each kappas from 1 to maxkappas
(default=15) ntrials (default=10) times AA, stores SSE, VarianceExplained from each run and then
computes knee or elbow point by using UIK method, see [3].

Determining the optimal updating parameters

Extensive trials have shown us that choosing the proper values for algorithmic updating parame-
ters (muAup, muAdown, muBup, muBdown) can speed up remarkably the process. That is the task
of find_pcha_optimal_parameters which conducts a grid search with different values of these
parameters and returns the values which minimize the SSE after a fixed number of iterations
(testing_iters, default=10).
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Evaluate the quality of Archetypal Analysis

By using function check_Bmatrix we can evaluate the overall quality of applied method and algo-
rithm. Quality can be considered high:

1. if every archetype is being created by a small number of data points

2. if relevant weights are not numerically insignificant

Of course we must take into account the SSE and VarianceExplained, but if we have to compare
two solutions with similar termination status, then we must choose that of the simplest B matrix
form.

Resampling

The package includes a function for resampling (grouped_resample) which may be used for stan-
dard bootstrapping or for subsampling. This function allows samples to be drawn with or without
replacement, by groups and with or without Dirichlet weights. This provides a variety of options
for researchers who wish to correct sample biases, estimate empirical confidence intervals, and/or
subsample large data sets.

Post-run tools

Except from check_Bmatrix there exist next functions for checking the convergence process itself
and for examining the local neighborhoud of archetypes:

1. The function study_AAconvergence analyzes the history of iterations done and produces a
multi-panel plot showing the steps and quality of the convergence to the final archetypes.

2. By setting the desired number npoints as argument in function find_closer_points we can
then find the data points that are in the local neighborhood of each archetype. This allows us
to study the properties of the solution or manually choose an initial approximation to search
for a better fit.

Note

Bug reports and feature requests can be sent to <dchristop@econ.uoa.gr> or
<dem.christop@gmail.com>.

Author(s)

Maintainer: Demetris Christopoulos <dchristop@econ.uoa.gr>

Other contributors:

• David Midgley <david.midgley@insead.edu> [contributor]

• Sunil Venaik <s.venaik@business.uq.edu.au> [contributor]

• INSEAD Fontainebleau France [funder]
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References
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AbsoluteTemperature Global Absolute Temperature data set for Northern Hemisphere 1969-
2013

Description

It is a subset from the data set which was used for publication [1], i.e. the Global Absolute Temper-
ature for Northern Hemisphere (1800-2013) with only complete yearly observations included. Here
we have kept the years 1969-2013.

Usage

data("AbsoluteTemperature")

Format

A data frame with 155862 observations on the following 18 variables.

Year an integer vector of observation years from 1969 to 2013

Jan numeric vector of monthly average temperature for January

Feb numeric vector of monthly average temperature for February

Mar numeric vector of monthly average temperature for March

Apr numeric vector of monthly average temperature for April

May numeric vector of monthly average temperature for May

Jun numeric vector of monthly average temperature for June

Jul numeric vector of monthly average temperature for July

Aug numeric vector of monthly average temperature for August

Sep numeric vector of monthly average temperature for September

Oct numeric vector of monthly average temperature for October

Nov numeric vector of monthly average temperature for November

Dec numeric vector of monthly average temperature for December
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long a numeric vector for the geographical longitude: positive values for eastings

lat a numeric vector for the geographical latitude: positive values for northings

h a numeric vector for the altitude in metrs

stid an integer vector with the station identity number

z an integer vector with the relevant climate zone:

• 1, Tropical Zone
• 2, Subtropics
• 3, Temperate zone
• 4, Cold Zone

Details

That data set was the output of the procedure described in [1]. Initial data set was downloaded from
[2] at 2014-12-17.

References

[1] Demetris T. Christopoulos. Extraction of the global absolute temperature for Northern Hemi-
sphere using a set of 6190 meteorological stations from 1800 to 2013. Journal of Atmospheric and
Solar-Terrestrial Physics, 128:70 - 83, 3 2015. doi:10.1016/j.jastp.2015.03.009

[2] Met Office Hadley Centre observations datasets, station data sets,
http:///www.metoffice.gov.uk/hadobs/crutem4/data/station_files/CRUTEM.4.2.0.0.station_files.zip
(last visited 17.12.14)

Examples

#
######################################
## Load absolute temperature data set:
######################################
#
data("AbsoluteTemperature")
df=AbsoluteTemperature
## Find proportions for climate zones
pcs=table(df$z)/dim(df)[1]
## Choose an approximate size of the new sample and compute resample sizes
N=1000
resamplesizes=as.integer(round(N*pcs))
sum(resamplesizes)
## Create the grouping matrix
groupmat=data.frame("Group_ID"=1:4,"Resample_Size"=resamplesizes)
groupmat
## Simple resampling:
resample_simple <- grouped_resample(in_data = df,grp_vector = "z",
grp_matrix = groupmat,replace = FALSE, option = "Simple", rseed = 20191119)
cat(dim(resample_simple),"\n")
## Dirichlet resampling:
resample_dirichlet <- grouped_resample(in_data = df,grp_vector = "z",
grp_matrix = groupmat, replace = FALSE, option = "Dirichlet", rseed = 20191119)
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cat(dim(resample_dirichlet),"\n")
#
#########################################
## Reproduce the results of 2015 article
#########################################
##
data("AbsoluteTemperature")
dh=AbsoluteTemperature
## Create yearly averages for every station
dh$avg = rowMeans(df[,month.abb[1:12]])
head(dh)
## Compute mean average of every year for all Northern Hemisphere
dagg=data.frame(aggregate(avg~Year,dh,function(x){c(mean(x),sd(x))}))
## Find used stations per year
daggn=aggregate(stid ~ Year,dh,length)
head(daggn)
tail(daggn)
## Combine all in a data frame
dagyears=data.frame(dagg$Year,daggn$stid,dagg$avg[,1],dagg$avg[,2])
colnames(dagyears)=c("Year","Nv","mu","Smu")
head(dagyears)
tail(dagyears)
#
## Compare with Table 7 (Columns: Year, Nv, mu_bar, Smu_bar), page 77 of article
## Extraction of the global absolute temperature for Northern Hemisphere
## using a set of 6190 meteorological stations from 1800 to 2013
## https://doi.org/10.1016/j.jastp.2015.03.009
## and specifically the years 1969--2013

align_archetypes_from_list

Align archetypes from a list either by the most frequent found or by
using a given archetype

Description

Align archetypes from a list either by the most frequent or by using a given archetype.

Usage

align_archetypes_from_list(archs_list, given_arch = NULL,
varnames = NULL, ndigits = 0, parallel = FALSE,
nworkers = NULL, verbose = TRUE)

Arguments

archs_list The list of archetypes that must be aligned
given_arch If it is not NULL, then given_arch will by used as guide for aligning other

archetypes of list. Otherwise, a heuristic for finding the most frequent archetype
will be used.
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varnames The character vector of variable names that must be used. If it is NULL, then
the column names of first archetype will be used.

ndigits The number of digits that will be used for truncation.

parallel If it set to TRUE, then parallel processing will be applied.

nworkers The number of logical processors that will be used for parallel computing (usu-
ally it is the double of available physical cores).

verbose If it is set to TRUE, then details are printed out

Value

A list with members:

1. arch_guide, the archetype used as guide for aligning others

2. phrases_most, a table with all rounded phrases from archetypes. Frequencies are in decreasing
order, so first row indicates the most frequent sequence, if exists. Otherwise we take randomly
a case and proceed.

3. archs_aa_output, a data frame with rows all given archetypes

4. archs_aligned, the final list of aligned archetypes

References

This function is a modification of "align_arc" function from package "ParetoTI", see https://
github.com/vitkl/ParetoTI and https://github.com/vitkl/ParetoTI/blob/master/R/align_
arc.R

Examples

data("wd2") #2D demo
df = wd2
# Define 4 archetypes found for it
dalist = list(c(2.172991,3.200754,5.384013,2.579770,4.860343,3.085111),

c(5.430821,3.128493,2.043495,3.146342,4.781851,2.710885),
c(5.430752,2.043403,3.128520,3.146252,2.710979,4.781880),
c(2.043854,5.430890,3.127183,2.710522,3.146432,4.780432))

archslist = lapply(dalist, function(x){matrix(x,ncol=2)}) #not aligned
# Run aligner
yy = align_archetypes_from_list(archs_list = archslist,

given_arch = archslist[[1]])
yy$arch_guide
aligned_archs = yy$archs_aligned
aligned_archs #observe that they are comparable now

https://github.com/vitkl/ParetoTI
https://github.com/vitkl/ParetoTI
https://github.com/vitkl/ParetoTI/blob/master/R/align_arc.R
https://github.com/vitkl/ParetoTI/blob/master/R/align_arc.R
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archetypal archetypal: Finds the archetypal analysis of a data frame by using a
variant of the PCHA algorithm

Description

Performs archetypal analysis by using Principal Convex Hull Analysis (PCHA) under a full control
of all algorithmic parameters.

Usage

archetypal(df, kappas, initialrows = NULL,
method = "projected_convexhull", nprojected = 2, npartition = 10,
nfurthest = 10, maxiter = 2000, conv_crit = 1e-06,
var_crit = 0.9999, verbose = TRUE, rseed = NULL, aupdate1 = 25,
aupdate2 = 10, bupdate = 10, muAup = 1.2, muAdown = 0.5,
muBup = 1.2, muBdown = 0.5, SSE_A_conv = 1e-09,
SSE_B_conv = 1e-09, save_history = FALSE, nworkers = NULL,
stop_varexpl = TRUE)

Arguments

df The data frame with dimensions n x d

kappas The number of archetypes

initialrows The initial set of rows from data frame that will be used for starting algorithm

method The method that will be used for computing initial approximation:

1. projected_convexhull, see find_outmost_projected_convexhull_points
2. convexhull, see find_outmost_convexhull_points

3. partitioned_convexhull, see find_outmost_partitioned_convexhull_points
4. furthestsum, see find_furthestsum_points

5. outmost, see find_outmost_points

6. random, a random set of kappas points will be used

nprojected The dimension of the projected subspace for find_outmost_projected_convexhull_points

npartition The number of partitions for find_outmost_partitioned_convexhull_points

nfurthest The number of times that FurthestSum algorithm will be applied by find_furthestsum_points

maxiter The maximum number of iterations for main algorithm application

conv_crit The SSE convergence criterion of termination: iterate until |dSSE|/SSE<conv_crit

var_crit The Variance Explained (VarExpl) convergence criterion of termination: iterate
until VarExpl<var_crit

verbose If it is set to TRUE, then both initialization and iteration details are printed out

rseed The random seed that will be used for setting initial A matrix. Useful for repro-
ducible results.
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aupdate1 The number of initial applications of Aupdate for improving the initially ran-
domly selected A matrix

aupdate2 The number of Aupdate applications in main iteration

bupdate The number of Bupdate applications in main iteration

muAup The factor (>1) by which muA is multiplied when it holds SSE<=SSE_old(1+SSE_A_conv)

muAdown The factor (<1) by which muA is multiplied when it holds SSE>SSE_old(1+SSE_A_conv)

muBup The factor (>1) by which muB is multiplied when it holds SSE<=SSE_old(1+SSE_B_conv)

muBdown The factor (<1) by which muB is multiplied when it holds SSE>SSE_old(1+SSE_B_conv)

SSE_A_conv The convergence value used in SSE<=SSE_old(1+SSE_A_conv). Warning: there
exists a Matlab crash sometimes after setting this to 1E-16 or lower

SSE_B_conv The convergence value used in SSE<=SSE_old(1+SSE_A_conv). Warning: there
exists a Matlab crash sometimes after setting this to 1E-16 or lower

save_history If set TRUE, then iteration history is being saved for further use

nworkers The number of logical processors that will be used for parallel computing (usu-
ally it is the double of available physical cores). Parallel computation is applied
when asked by functions find_furthestsum_points,
find_outmost_partitioned_convexhull_points and
find_outmost_projected_convexhull_points.

stop_varexpl If set TRUE, then algorithm stops if varexpl is greater than var_crit

Value

A list with members:

1. BY, the kappas× d matrix of archetypes found

2. A, the n× kappas matrix such that Y ~ ABY or Frobenius norm ||Y-ABY|| is minimum

3. B, the kappas× n matrix such that Y ~ ABY or Frobenius norm ||Y-ABY|| is minimum

4. SSE, the sum of squared error SSE = ||Y-ABY||^2

5. varexpl, the Variance Explained = (SST-SSE)/SST where SST is the total sum of squares for
data set matrix

6. initialsolution, the initially used set of rows from data frame in order to start the algorithm

7. freqstable, the frequency table for all found rows, if it is available.

8. iterations, the number of main iterations done by algorithm

9. time, the time in seconds that was spent from entire run

10. converges, if it is TRUE, then convergence was achieved before the end of maximum allowed
iterations

11. nAup, the total number of times when it was SSE<=SSE_old(1+SSE_A_conv) in Aupdate
processes. Useful for debugging purposes.

12. nAdown, the total number of times when it was SSE>SSE_old(1+SSE_A_conv) in Aupdate
processes. Useful for debugging purposes.

13. nBup, the total number of times when it was SSE<=SSE_old(1+SSE_B_conv) in Bupdate
processes. Useful for debugging purposes.
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14. nBdown, the total number of times when it was SSE>SSE_old(1+SSE_A_conv in Bupdate
processes. Useful for debugging purposes.

15. run_results, a list of iteration related details: SSE, varexpl, time, B, BY for all iterations
done.

16. Y, the n× d matrix of initial data used

17. data.tables, the initial data frame if column dimension is at most 3 or a list of frequencies
for each variable

18. call, the exact calling used

References

[1] M Morup and LK Hansen, "Archetypal analysis for machine learning and data mining", Neuro-
computing (Elsevier, 2012). https://doi.org/10.1016/j.neucom.2011.06.033.

[2] Source: https://mortenmorup.dk/?page_id=2 , last accessed 2024-03-09

Examples

{
# Create a small 2D data set from 3 corner-points:
p1 = c(1,2);p2 = c(3,5);p3 = c(7,3)
dp = rbind(p1,p2,p3);dp
set.seed(916070)
pts = t(sapply(1:20, function(i,dp){
cc = runif(3)
cc = cc/sum(cc)
colSums(dp*cc)

},dp))
df = data.frame(pts)
colnames(df) = c("x","y")
# Run AA:
aa = archetypal(df = df, kappas = 3, verbose = FALSE, save_history = TRUE)
# Print class "archetypal":
print(aa)
# Summary class "archetypal":
summary(aa)
# Plot class "archetypal":
plot(aa)
# See history of iterations:
names(aa$run_results)

}

check_Bmatrix Function which checks B matrix of Archetypal Analysis Y ~ A B Y in
order to find the used rows for creating each archetype and the relevant
used weights.
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Description

Function which checks B matrix of Archetypal Analysis Y ~ A B Y in order to find the used rows
for creating each archetype and the relevant used weights.

Usage

check_Bmatrix(B, chvertices = NULL, verbose = TRUE)

Arguments

B The kappas × n matrix such that Y ~ ABY or Frobenius norm ||Y-ABY|| is
minimum

chvertices The vector of rows which represent the Convex Hull of data frame

verbose If set to TRUE, then results are printed out.

Value

A list with members:

1. used_rows, a list with used rows for creating each archetype

2. used_weights, a list with the relevant weights that have been used

3. leading_rows, the rows for each archetype with greatest weight

4. leading_weights, the weights of leading rows

5. used_on_convexhull, the portion of used rows which lie on Convex Hull (if given)

See Also

archetypal, check_Bmatrix, find_closer_points
& study_AAconvergence

Examples

{
# Load data "wd2"
data("wd2")
df = wd2
# Run AA:
aa = archetypal(df = df, kappas = 3, verbose = FALSE)
# Check B matrix:
B = aa$B
yy = check_Bmatrix(B, verbose = TRUE)
yy$used_rows
yy$used_weights
yy$leading_rows
yy$leading_weights
# Check if used rows lie on ConvexHull
ch = chull(df)
yy = check_Bmatrix(B, chvertices = ch, verbose = FALSE)
yy$used_on_convexhull
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#

}

dirichlet_sample Function which performs Dirichlet sampling

Description

It uses Dirichlet weights for creating sub-samples of initial data set.

Usage

dirichlet_sample(in_data = NULL, sample_size = NULL,
replacement = NULL, rseed = NULL)

Arguments

in_data The initial data frame that must be re-sampled. It must contain:

1. an ID variable
2. the variables of interest
3. a grouping variable

sample_size An integer for the size of the new sample

replacement A logical input: TRUE/FALSE if replacement should be used or not, respec-
tively

rseed The random seed that will be used for setting initial A matrix. Useful for repro-
ducible results

Value

It returns a data frame with exactly the same variables as the initial one, except that group variable
has now only the given value from input data frame.

Author(s)

David Midgley

See Also

grouped_resample
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Examples

## Load absolute temperature data set:
data("AbsoluteTemperature")
df=AbsoluteTemperature
## Find portions for climate zones
pcs=table(df$z)/dim(df)[1]
## Choose the approximate size of the new sample and compute resample sizes
N=1000
resamplesizes=as.integer(round(N*pcs))
sum(resamplesizes)
## Create the grouping matrix
groupmat=data.frame("Group_ID"=1:4,"Resample_Size"=resamplesizes)
groupmat
## Dirichlet resampling:
resample_dirichlet <- grouped_resample(in_data = df,grp_vector = "z",

grp_matrix = groupmat,replace = FALSE,
option = "Dirichlet", rseed = 20191220)

cat(dim(resample_dirichlet),"\n")

find_closer_points Function which finds the data points that are closer to the archetypes
during all iterations of the algorithm PCHA

Description

This function runs the PCHA algorithm and finds the data points that are in the local neighborhood
of each archetype. The size of the neighborhood is user defined (npoints). This allows us to study
the properties of the solution or manually choose an initial approximation to search for a better fit.

Usage

find_closer_points(df, kappas, usedata = FALSE, npoints = 2,
nworkers = NULL, rseed = NULL,
verbose = FALSE, doparallel = FALSE, ...)

Arguments

df The data frame with dimensions n x d

kappas The number of archetypes

usedata If it is TRUE, then entire data frame will be used, if doparallel = TRUE

npoints The number of closer points to be estimated

nworkers The number of logical processors that will be used, if doparallel = TRUE

rseed The random seed that will be used for random generator. Useful for reproducible
results.

verbose If it is set to TRUE, then details will be printed, except from archetypal

doparallel If it is set to TRUE, then parallel processing will be performed



find_furthestsum_points 15

... Other arguments to be passed to archetypal except internally used save_history
= TRUE and verbose = FALSE. This is essential for using optimal parameters
found by find_pcha_optimal_parameters

Value

A list with members:

1. rows_history, a list with npoints rows used that are closer to each archetype for each iteration
done by algorithm

2. iter_terminal, iteration after which rows closer to archetypes do not change any more

3. rows_closer, the rows closer to archetypes by means of Euclidean distance and are fixed after
iter_terminal iteration

4. rows_closer_matrix, a matrix with npoints rows which are closer to each archetype

5. solution_used, the AA output that has been used. Some times useful, especially for big data.

See Also

check_Bmatrix, study_AAconvergence

Examples

{
# Load data "wd2"
data("wd2")
yy = find_closer_points(df = wd2, kappas = 3, npoints = 2, nworkers = 2)
yy$rows_history
yy$iter_terminal
yy$rows_closer
yy$rows_closer_matrix
yy$solution_used$BY

}

find_furthestsum_points

Function which finds the furthest sum points in order to be used as
initial solution in archetypal analysis

Description

Function which finds the furthest sum points in order to be used as initial solution in archetypal
analysis.

Usage

find_furthestsum_points(df, kappas, nfurthest = 100, nworkers = NULL,
sortrows = TRUE, doparallel = TRUE)
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Arguments

df The data frame with dimensions n x d

kappas The number of archetypes

nfurthest The number of applications for FurthestSum algorithm

nworkers The number of logical processors that will be used. Hint: set it such that
nfurthest can be an exact multiple of nworkers.

sortrows If it is TRUE, then rows will be sorted

doparallel If it is set to TRUE, then parallel processing will be performed for the nfurthest
applications of algorithm

Value

A list with members:

1. outmost, the first kappas furthest sum points as rows of data frame

2. outmostall, all the furthest sum points that have been found as rows of data frame

3. outmostfrequency, a matrix with frequency and cumulative frequency for furthest sum rows

See Also

FurthestSum

Examples

data("wd3") #3D demo
df = wd3
yy = find_furthestsum_points(df, kappas = 4, nfurthest = 10, nworkers = 2)
yy$outmost
yy$outmostall
yy$outmostfrequency

find_optimal_kappas Function for finding the optimal number of archetypes

Description

Function for finding the optimal number of archetypes in order to apply Archetypal Analysis for a
data frame.

Usage

find_optimal_kappas(df, maxkappas = 15, method = "projected_convexhull",
ntrials = 10, nworkers = NULL, ...)
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Arguments

df The data frame with dimensions n× d

maxkappas The maximum number of archetypes for which algorithm will be applied

method The method that will be used for computing the initial solution

ntrials The number of times that algorithm will be applied for each kappas

nworkers The number of logical processors that will be used for parallel computing (usu-
ally it is the double of available physical cores)

... Other arguments to be passed to function archetypal

Details

After having found the SSE for each kappas, UIK method (see [1]) is used for estimating the knee
or elbow point as the optimal kappas.

Value

A list with members:

1. all_sse, all available SSE for all kappas and all trials per kappas

2. all_sse1, all available SSE(k)/SSE(1) for all kappas and all trials per kappas

3. bestfit_sse, only the best fit SSE trial for each kappas

4. bestfit_sse1, only the best fit SSE(k)/SSE(1) trial for each kappas

5. all_kappas, the knee point of scree plot for all 4 SSE results

6. d2uik, the UIK for the absolute values of the estimated best fit SSE second derivatives, after
using second order forward divided differences approximation

7. optimal_kappas, the knee point from best fit SSE results

References

[1] Christopoulos, Demetris T., Introducing Unit Invariant Knee (UIK) As an Objective Choice
for Elbow Point in Multivariate Data Analysis Techniques (March 1, 2016). Available at SSRN:
http://dx.doi.org/10.2139/ssrn.3043076

See Also

archetypal

Examples

{
# Run may take a while depending on your machine ...
# Load data frame "wd2"
data("wd2")
df = wd2
# Run:
t1 = Sys.time()
yy = find_optimal_kappas(df, maxkappas = 10)
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t2 = Sys.time();print(t2-t1)
# Results:
names(yy)
# Best fit SSE:
yy$bestfit_sse
# Optimal kappas from UIK method:
yy$optimal_kappas
#

}

find_outmost_convexhull_points

Function which finds the outermost convex hull points in order to be
used as initial solution in archetypal analysis

Description

Function which finds the outermost convex hull points in order to be used as initial solution in
archetypal analysis

Usage

find_outmost_convexhull_points(df, kappas)

Arguments

df The data frame with dimensions n x d
kappas The number of archetypes

Details

This function uses the chull when d=2 (see [1], [2]) and the convhulln for d>2 (see [3]) cases.

Value

A list with members:

1. outmost, the first kappas most frequent outermost points as rows of data frame
2. outmostall, all the outermost points that have been found as rows of data frame
3. outmostfrequency, a matrix with frequency and cumulative frequency for outermost rows

References

[1] Eddy, W. F. (1977). A new convex hull algorithm for planar sets. ACM Transactions on Mathe-
matical Software, 3, 398-403. doi: 10.1145/355759.355766.
[2] Eddy, W. F. (1977). Algorithm 523: CONVEX, A new convex hull algorithm for planar sets
[Z]. ACM Transactions on Mathematical Software, 3, 411-412. doi: 10.1145/355759.355768.
[3] Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., "The Quickhull algorithm for convex hulls"
ACM Trans. on Mathematical Software, 22(4):469-483, Dec 1996, http://www.qhull.org
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See Also

find_furthestsum_points, find_outmost_projected_convexhull_points,

find_outmost_partitioned_convexhull_points & find_outmost_points

Examples

data("wd2") #2D demo
df = wd2
yy = find_outmost_convexhull_points(df, kappas = 3)
yy$outmost #the rows of 3 outermost points
df[yy$outmost,] #the 3 outermost points
yy$outmostall #all outermost cH rows
yy$outmostfrequency #their frequency
#
###
#
data("wd3") #3D demo
df = wd3
yy = find_outmost_convexhull_points(df, kappas = 4)
yy$outmost #the rows of 4 outermost points
df[yy$outmost,] #the 4 outermost points
yy$outmostall #all outermost cH rows
yy$outmostfrequency #their frequency

find_outmost_partitioned_convexhull_points

Function which finds the outermost convex hull points after making np
samples and finding convex hull for each of them.

Description

Function which finds the outermost convex hull points after making np samples and finding convex
hull for each of them. To be used as initial solution in archetypal analysis

Usage

find_outmost_partitioned_convexhull_points(df, kappas, np = 10,
nworkers = NULL)

Arguments

df The data frame with dimensions n x d

kappas The number of archetypes

np The number of partitions that will be used (or the number of samples)

nworkers The number of logical processors that will be used



20 find_outmost_points

Value

A list with members:

1. outmost, the first kappas most frequent outermost points as rows of data frame

2. outmostall, all the outermost points that have been found as rows of data frame

3. outmostfrequency, a matrix with frequency and cumulative frequency for outermost rows

See Also

find_furthestsum_points, find_outmost_projected_convexhull_points,

find_outmost_convexhull_points & find_outmost_points

Examples

data("wd2") #2D demo
df = wd2
yy = find_outmost_partitioned_convexhull_points(df, kappas = 3, nworkers = 2)
yy$outmost #the rows of 3 outermost points
df[yy$outmost,] #the 3 outermost points
yy$outmostall #all outermost rows
yy$outmostfrequency #their frequency

find_outmost_points Function which finds the outermost points in order to be used as initial
solution in archetypal analysis

Description

Function which finds the outermost points in order to be used as initial solution in archetypal anal-
ysis

Usage

find_outmost_points(df, kappas)

Arguments

df The data frame with dimensions n x d

kappas The number of archetypes

Value

A list with members:

1. outmost, the first kappas most frequent outermost points as rows of data frame

2. outmostall, all the outermost points that have been found as rows of data frame

3. outmostfrequency, a matrix with frequency and cumulative frequency for outermost rows
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Warning

This is a rather naive way to find the outermost points of a data frame and it should be used with
caution since for a n x d matrix we need in general 8 n^2/(2^30) GB RAM for numeric case. Check
your machine and use it. As a rule of thumb we advice its usage for n less or equal than 20000.

See Also

find_furthestsum_points, find_outmost_convexhull_points,

find_outmost_projected_convexhull_points,

and find_outmost_partitioned_convexhull_points

Examples

data("wd2") #2D demo
df = wd2
yy = find_outmost_points(df,kappas=3)
yy$outmost #the rows of 3 outmost points
yy$outmostall #all outmost found
yy$outmostfrequency #frequency table for all
df[yy$outmost,] #the 3 outmost points
#
###
#
data("wd3") #3D demo
df = wd3
yy = find_outmost_points(df,kappas=4)
yy$outmost #the rows of 4 outmost points
yy$outmostall #all outmost found
yy$outmostfrequency #frequency table for all
df[yy$outmost,] #the 4 outmost points

find_outmost_projected_convexhull_points

Function which finds the outermost projected convex hull points in
order to be used as initial solution in archetypal analysis

Description

Function which finds the outermost projected convex hull points in order to be used as initial solu-
tion in archetypal analysis.

Usage

find_outmost_projected_convexhull_points(df, kappas, npr = 2, rseed = NULL,
doparallel = FALSE, nworkers = NULL,
uniquerows = FALSE)
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Arguments

df The n x d data frame that will be used for Archetypal Analysis

kappas The number of archetypes

npr The dimension of the projected subspaces. It can be npr = 1 (then there are d
such subspaces), or npr > 1 (then we have C(d,npr) different subspaces)

rseed An integer to be used for the random seed if it will be necessary

doparallel If it is set to TRUE, then parallel processing will be performed. That is abso-
lutely required if n is very large and d>6.

nworkers The number of logical processors that will be used for computing the projected
convex hulls, which they are always C(d,npr).

uniquerows If it is set to TRUE, then unique rows will be used for computing distance matrix
and less resources will be needed.

Details

If npr = 1, then Convex Hull is identical with the range (min,max) for the relevant variable, other-
wise the function uses the chull when npr = 2 and the convhulln for npr > 2. See [1] and [2]
respectively for more details.

First all available projections are being considered and their Convex Hull are being computed. Then
either the unique (if uniquerows = TRUE) or all (if uniquerows = FALSE) associated data rows form
a matrix and finally by using dist we find the kappas most frequent outermost rows.
A special care is needed if the rows we have found are less than kappas. In that case, if a random
sampling is necessary, the output usedrandoms informs us for the number of random rows and the
rseed can be used for reproducibility.

Value

A list with members:

1. outmost, the first kappas most frequent outermost points as rows of data frame

2. outmostall, all the outermost points that have been found as rows of data frame

3. outmostfrequency, a matrix with frequency and cumulative frequency for outermost rows

4. usedrandom, an integer of randomly chosen rows, if it was necessary to complete the number
of kappas rows

5. chprojections, all the Convex Hulls of the different C(d,npr) projections, i.e. the coordinate
projection subspaces

6. projected, a data frame with rows the unique points that have been projected in order to create
the relevant Convex Hulls of coordinate projection subspaces

References

[1] Eddy, W. F. (1977). Algorithm 523: CONVEX, A new convex hull algorithm for planar sets.
ACM Transactions on Mathematical Software, 3, 411-412. doi: 10.1145/355759.355768.

[2] Barber, C.B., Dobkin, D.P., and Huhdanpraa, H.T., "The Quickhull algorithm for convex hulls"
ACM Trans. on Mathematical Software, 22(4):469-483, Dec 1996, http://www.qhull.org
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See Also

find_furthestsum_points, find_outmost_convexhull_points

find_outmost_partitioned_convexhull_points & find_outmost_points

Examples

#
data("wd2") #2D demo
df = wd2
yy = find_outmost_projected_convexhull_points(df, kappas = 3)
yy$outmost #the rows of 3 outmost projected convexhull points
yy$outmostall #all outmost found
yy$outmostfrequency #frequency table for all
yy$usedrandom #No random row was used
yy$chprojections #The Convex Hull of projection (one only here)
yy$projected #the 9 unique points that created the one only CH
df[yy$outmost,] #the 3 outmost projected convexhull points
#
###
#
data("wd3") #3D demo
df = wd3
yy = find_outmost_projected_convexhull_points(df, kappas = 4)
yy$outmost #the rows of 4 outmost projected convexhull points
yy$outmostall #all outmost found
yy$outmostfrequency #frequency table for all
yy$usedrandom #No random row was used
yy$chprojections #All the Convex Hulls of projections top coordinate planes
yy$projected #the 14 unique points that created all CHs
df[yy$outmost,] #the 4 outmost projected convexhull points
#

find_pcha_optimal_parameters

Finds the optimal updating parameters to be used for the PCHA algo-
rithm

Description

After creating a grid on the space of (mu_up, mu_down) it runs archetypal by using a given
method & other running options passed by ellipsis (...) and finally finds those values which mini-
mize the SSE at the end of testing_iters iterations (default=10).

Usage

find_pcha_optimal_parameters(df, kappas, method = "projected_convexhull",
testing_iters = 10, nworkers = NULL, nprojected = 2, npartition = 10,
nfurthest = 100, sortrows = FALSE,
mup1 = 1.1, mup2 = 2.50, mdown1 = 0.1, mdown2 = 0.5, nmup = 10, nmdown = 10,
rseed = NULL, plot = FALSE, ...)
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Arguments

df The data frame with dimensions n x d

kappas The number of archetypes

method The method that will be used for computing initial approximation:

1. projected_convexhull, see find_outmost_projected_convexhull_points
2. convexhull, see find_outmost_convexhull_points

3. partitioned_convexhull, see find_outmost_partitioned_convexhull_points
4. furthestsum, see find_furthestsum_points

5. outmost, see find_outmost_points

6. random, a random set of kappas points will be used

testing_iters The maximum number of iterations to run for every pair (mu_up, mu_down) of
parameters

nworkers The number of logical processors that will be used for parallel computing (usu-
ally it is the double of available physical cores)

nprojected The dimension of the projected subspace for find_outmost_projected_convexhull_points

npartition The number of partitions for find_outmost_partitioned_convexhull_points

nfurthest The number of times that FurthestSum algorithm will be applied

sortrows If it is TRUE, then rows will be sorted in find_furthestsum_points

mup1 The minimum value of mu_up, default is 1.1

mup2 The maximum value of mu_up, default is 2.5

mdown1 The minimum value of mu_down, default is 0.1

mdown2 The maximum value of mu_down, default is 0.5

nmup The number of points to be taken for [mup1,mup2], default is 10

nmdown The number of points to be taken for [mdown1,mdown2]

rseed The random seed that will be used for setting initial A matrix. Useful for repro-
ducible results

plot If it is TRUE, then a 3D plot for (mu_up, mu_down, SSE) is created

... Other arguments to be passed to function archetypal

Value

A list with members:

1. mu_up_opt, the optimal found value for muAup and muBup

2. mu_down_opt, the optimal found value for muAdown and muBdown

3. min_sse, the minimum SSE which corresponds to (mu_up_opt,mu_down_opt)

4. seed_used, the used random seed, absolutely necessary for reproducing optimal results

5. method_used, the method that was used for creating the initial solution

6. sol_initial, the initial solution that was used for all grid computations

7. testing_iters, the maximum number of iterations done by every grid computation
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See Also

find_closer_points

Examples

{
data("wd25")
out = find_pcha_optimal_parameters(df = wd25, kappas = 5, rseed = 2020)
# Time difference of 30.91101 secs
# mu_up_opt mu_down_opt min_sse
# 2.188889 0.100000 4.490980
# Run now given the above optimal found parameters:
aa = archetypal(df = wd25, kappas = 5,

initialrows = out$sol_initial, rseed = out$seed_used,
muAup = out$mu_up_opt, muAdown = out$mu_down_opt,
muBup = out$mu_up_opt, muBdown = out$mu_down_opt)

aa[c("SSE", "varexpl", "iterations", "time" )]
# $SSE
# [1] 3.629542
#
# $varexpl
# [1] 0.9998924
#
# $iterations
# [1] 146
#
# $time
# [1] 21.96
# Compare it with a simple solution (time may vary)
aa2 = archetypal(df = wd25, kappas = 5, rseed = 2020)
aa2[c("SSE", "varexpl", "iterations", "time" )]
# $SSE
# [1] 3.629503
#
# $varexpl
# [1] 0.9998924
#
# $iterations
# [1] 164
#
# $time
# [1] 23.55
## Of course the above was a "toy example", if your data has thousands or million rows,
## then the time reduction is much more conspicuous.
# Close plot device:
dev.off()

}
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FurthestSum Application of FurthestSum algorithm in order to find an initial solu-
tion for Archetypal Analysis

Description

The FurthestSum algorithm as was written by Morup and Hansen in Matlab, see [1] and it is based
on [2]. The algorithm has been converted in order to use commonly used data frames in R.

Usage

FurthestSum(Y, kappas, irows, exclude = NULL)

Arguments

Y The data frame with dimensions n× d

kappas The number of archetypes

irows The initially used rows of data frame for starting algorithm

exclude The rows of data frame that we want to exclude from being checked

Value

The vector of rows that constitute the initial FurthestSum solution

References

[1] Source: https://mortenmorup.dk/?page_id=2 , last accessed 2024-03-09

[2] D.S. Hochbaum, D.B. Shmoys, A best possible heuristic for the k-center problem,
Math. Oper. Res. 10(2) (1985) 180-184. https://doi.org/10.1287/moor.10.2.180

See Also

find_furthestsum_points

Examples

data("wd3") #3D demo
df = wd3
FurthestSum(df, kappas = 4, irows = sample(1:dim(df)[1],1))
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gallupGPS6 Gallup Global Preferences Study processed data set of six variables

Description

A 76132 x 6 data frame derived from Gallup Global Preferences Study, see [1] and [2] for details.
It can be used as a big data set example.

Usage

data("gallupGPS6")

Format

A data frame with 76132 complete observations on the following 6 variables.

patience a numeric vector

risktaking a numeric vector

posrecip a numeric vector

negrecip a numeric vector

altruism a numeric vector

trust a numeric vector

Details

Data processing:

1. The non complete rows have been removed

2. The duplicated rows have also been removed

Note

1. The data was provided under a Creative Commons NonCommerical ShareAlike 4.0 license:
https://creativecommons.org/licenses/by-nc-sa/4.0/

2. Other variables and identifiers from the original data have been dropped

Source

Individual data set was downloaded from https://www.gallup.com/analytics/318923/world-poll-public-datasets.
aspx, last accessed 2024-03-09.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.gallup.com/analytics/318923/world-poll-public-datasets.aspx
https://www.gallup.com/analytics/318923/world-poll-public-datasets.aspx


28 grouped_resample

References

[1] Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D., & Sunde, U. (2018). Global evidence
on economic preferences. Quarterly Journal of Economics, 133 (4), 1645-1692.

[2] Falk, A., Becker, A., Dohmen, T. J., Huffman, D., & Sunde, U. (2016). The preference survey
module: A validated instrument for measuring risk, time, and social preferences. IZA Discussion
Paper No. 9674.

Examples

data(gallupGPS6)
summary(gallupGPS6)

grouped_resample Function for performing simple or Dirichlet resampling

Description

The function may be used for standard bootstrapping or for subsampling, see [1]. This function
allows samples to be drawn with or without replacement, by groups and with or without Dirichlet
weights, see [2]. This provides a variety of options for researchers who wish to correct sample
biases, estimate empirical confidence intervals, and/or subsample large data sets.

Usage

grouped_resample(in_data = NULL, grp_vector = NULL, grp_matrix = NULL,
replace = FALSE, option = "Simple", number_samples = 1,
nworkers = NULL, rseed = NULL)

Arguments

in_data The initial data frame that must be re-sampled. It must contain:

1. an ID variable
2. the variables of interest
3. a grouping variable

grp_vector The grouping variable of the data frame, defined under the name ’group’ for
example

grp_matrix A matrix that contains

1. the variable ’Group_ID’ with entries all the available values of grouping
variable

2. the variable ’Resample_Size’ with the sizes for each sample that will be
created per grouping value

replace A logical input: TRUE/FALSE if replacement should be used or not, respec-
tively



grouped_resample 29

option A character input with next possible values

1. "Simple", if we want to perform a simple re-sampling
2. "Dirichlet", if we want to perform a Dirichlet weighted re-sampling

number_samples The number of samples to be created. If it is greater than one, then parallel
processing is used.

nworkers The number of logical processors that will be used for parallel computing (usu-
ally it is the double of available physical cores)

rseed The random seed that will be used for sampling. Useful for reproducible results

Value

It returns a list of mumber_samples data frames with exactly the same variables as the initial one,
except that group variable has now only the given value from input data frame.

Author(s)

David Midgley

References

[1] D. N. Politis, J. P. Romano, M. Wolf, Subsampling (Springer-Verlag, New York, 1999).

[2] Baath R (2018). bayesboot: An Implementation of Rubin’s (1981) Bayesian Bootstrap. R
package version 0.2.2, URL https://CRAN.R-project.org/package=bayesboot

See Also

dirichlet_sample

Examples

## Load absolute temperature data set:
data("AbsoluteTemperature")
df <- AbsoluteTemperature
## Find portions for climate zones
pcs <- table(df$z)/dim(df)[1]
## Choose the approximate size of the new sample and compute resample sizes
N <- round(sqrt(nrow(AbsoluteTemperature)))
resamplesizes=as.integer(round(N*pcs))
sum(resamplesizes)
## Create the grouping matrix
groupmat <- data.frame("Group_ID"=1:4,"Resample_Size"=resamplesizes)
groupmat
## Simple resampling:
resample_simple <- grouped_resample(in_data = df, grp_vector = "z",

grp_matrix = groupmat, replace = FALSE, option = "Simple",
number_samples = 1, nworkers = NULL, rseed = 20191220)

cat(dim(resample_simple[[1]]),"\n")
## Dirichlet resampling:
resample_dirichlet <- grouped_resample(in_data = df, grp_vector = "z",

grp_matrix = groupmat, replace = FALSE, option = "Dirichlet",
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number_samples = 1, nworkers = NULL, rseed = 20191220)
cat(dim(resample_dirichlet[[1]]),"\n")
##
# ## Work in parallel and create many samples
# ## Choose a random seed
# nseed <- 20191119
# ## Simple
# reslist1 <- grouped_resample(in_data = df, grp_vector = "z", grp_matrix = groupmat,
# replace = FALSE, option = "Simple",
# number_samples = 10, nworkers = NULL,
# rseed = nseed)
# sapply(reslist1, dim)
# ## Dirichlet
# reslist2 <- grouped_resample(in_data = df, grp_vector = "z", grp_matrix = groupmat,
# replace = FALSE, option = "Dirichlet",
# number_samples = 10, nworkers = NULL,
# rseed = nseed)
# sapply(reslist2, dim)
# ## Check for same rows between 1st sample of 'Simple' and 1st sample of 'Dirichlet' ...
# mapply(function(x,y){sum(rownames(x)%in%rownames(y))},reslist1,reslist2)
#

kappa_tools Compute kappa tools for data dimensionality analysis

Description

For a given data set and a given Archetypal Analysis (AA) solution, it finds a set of useful proxies
for the dimensionality.

Usage

kappa_tools(aa, df = NULL, numBins = 100, chvertices = NULL, verbose = FALSE, ...)

Arguments

aa An object of the class ’archetypal’
df The data frame that was used for AA
numBins The number of bins to be used for computing entropy
chvertices The Convex Hull vertices, if they are given
verbose Logical, set to TRUE if details must be printed
... Other areguments, not used.

Details

The ECDF for the Squared Errors (SE) is computed and then the relevant curve is classified as
’convex’ or ’concave’ and its UIK & inflcetion point is found. Then the number of used rows for
cfreating archetypes is found. A procedure for creating BIC and andjusted BIC is used. Finally the
pecentage of used points that lie on the exact Convex Hull is given.
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Value

A list with next arguments:

ecdf The ECDF of SE

Convexity The convex or concave classification for ECDF curve

UIK The UIK points of ECDF curve by using [1]

INFLECTION The inflection points of ECDF curve by using [2]

NumberRowsUsed The number of rows used for creating archetypes

RowsUsed The exact rows used for creating archetypes

SSE The Sum of SE

BIC The computed BIC by using [3], [4]

adjBIC The computed adjusted BIC by using [3], [4]

CXHE The percentage of used points that lie on the exact Convex Hull

Author(s)

Demetris T. Christopoulos, David F. Midgley (creator of BIC and adjBIC procedures)

References

[1] Demetris T. Christopoulos, Introducing Unit Invariant Knee (UIK) As an Objective Choice
for Elbow Point in Multivariate Data Analysis Techniques (March 1, 2016). Available at SSRN:
https://ssrn.com/abstract=3043076 or http://dx.doi.org/10.2139/ssrn.3043076

[2] Demetris T. Christopoulos, On the efficient identification of an inflection point,International
Journal of Mathematics and Scientific Computing,(ISSN: 2231-5330), vol. 6(1), 2016.

[3] Felix Abramovich, Yoav Benjamini, David L. Donoho, Iain M. Johnstone. "Adapting to un-
known sparsity by controlling the false discovery rate." The Annals of Statistics, 34(2) 584-653
April 2006. https://doi.org/10.1214/009053606000000074

[4] Murari, Andrea, Emmanuele Peluso, Francesco Cianfrani, Pasquale Gaudio, and Michele Lun-
garoni. 2019. "On the Use of Entropy to Improve Model Selection Criteria" Entropy 21, no. 4: 394.
https://doi.org/10.3390/e21040394

Examples

{
## Use the sample data "wd2"
data(wd2)
require("geometry")
ch=convhulln(as.matrix(wd2),'Fx')
chlist=as.list(ch)
chvertices = unique(do.call(c,chlist))
aa=archetypal(wd2, 3)
out=kappa_tools(aa , df = wd2, numBins = 100, chvertices, verbose = T )
out

}



32 plot.kappa_tools

plot.archetypal Plot an object of the class archetypal.

Description

It makes a plot of the archetypes creating after using archetypal

Usage

## S3 method for class 'archetypal'
plot(x, ...)

Arguments

x An object of the class archetypal

... Other arguments (ignored)

Details

If the data frame has column dimension at most 3, then a direct plot is available. Otherwise we use
a "spike-spider" plot which is a combination of the common "spider" or "web" or "radar" plot with
an additional "spike plot" that shows the frequency of each variable at the same line of the spider
plot.

Examples

{
## Use the sample data "wd2"
data(wd2)
aa=archetypal(wd2, 3)
plot(aa)

}

plot.kappa_tools Plot an object of the class kappa_tools

Description

It makes a plot of the results created after using kappa_tools

Usage

## S3 method for class 'kappa_tools'
plot(x, ...)
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Arguments

x An object of the class kappa_tools

... Other arguments (ignored)

Details

A panel of 2 plots is being created, see kappa_tools for details.

See Also

kappa_tools

Examples

{
### Use the sample data "wd2"
data(wd2)
ch=convhulln(as.matrix(wd2),'Fx')
chlist=as.list(ch)
chvertices = unique(do.call(c,chlist))
aa=archetypal(wd2, 3)
out=kappa_tools(aa , df = wd2, numBins = 100, chvertices, verbose = T )
plot(out)

}

plot.study_AAconvergence

Plot an object of the class study_AAconvergence

Description

It makes a plot of the results created after using study_AAconvergence

Usage

## S3 method for class 'study_AAconvergence'
plot(x, ...)

Arguments

x An object of the class study_AAconvergence

... Other arguments (ignored)

Details

A panel of 7 plots is being created, see study_AAconvergence for details.
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See Also

study_AAconvergence

Examples

{
## Use the sample data "wd2"
data(wd2)
yy=study_AAconvergence(wd2, 3, plot = FALSE)
plot(yy)

}

plot_archs A function for plotting arechetypes

Description

A data frame or matrix of archetypes can be plotted

Usage

plot_archs(archs, data = NULL, show_data = FALSE, ...)

Arguments

archs The matrix or data frame of archetypes where each row represents an archetype

data Optional argument, if used data frame is known

show_data if it set to TRUE, then the used data frame will be plotted at the same plot

... Other arguments (ignored)

Details

If the column dimension of the archetypes is less or ewqual to 3, then a normal plot is presented.
Otherwise, a "spike-spider" plot is crerated, see plot.archetypal for details.

See Also

plot.archetypal

Examples

BY=matrix(c(5.430744, 2.043404, 3.128485, 3.146242, 2.710978, 4.781843), nrow = 3, byrow = TRUE)
plot_archs(BY)
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print.archetypal Print an object of the class archetypal.

Description

It prints the output of archetypal

Usage

## S3 method for class 'archetypal'
print(x, ...)

Arguments

x An object of the class archetypal

... Other arguments (ignored)

Details

Since Archetypal Analysis (AA) is essentially one more matrix decomposition of the form Y ~
ABY, it is reasonable to print:

1. the kappas× d matrix of archetypes found

2. the n× kappas matrix A such that Y ~ ABY or Frobenius norm ||Y-ABY|| is minimum

3. the kappas× n matrix B such that Y ~ ABY or Frobenius norm ||Y-ABY|| is minimum

Examples

{
## Use the sample data "wd2"
data(wd2)
aa=archetypal(wd2, 3)
print(aa)

}

study_AAconvergence Function which studies the convergence of Archetypal Analysis when
using the PCHA algorithm
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Description

First it finds an AA solution under given arguments while storing all iteration history (save_history
= TRUE). Then it computes the LOWESS [1] of SSE and its relevant UIK point [2]. Study is per-
formed for iterations after that point. The list of B-matrices and archetypes that were found are
stored. The archetypes are being aligned, while the B-matrices are used for computing the used
rows-weights, leading rows-weights and maybe percentage of used rows on Convex Hull. The
Aitken SSE extrapolation plus the relevant error are computed. The order and rate of convergence
are estimated. Finally a multi-plot panel is being created if asked.

Usage

study_AAconvergence(df, kappas, method = "projected_convexhull",
rseed = NULL, chvertices = NULL, plot = FALSE, ...)

Arguments

df The data frame with dimensions n x d

kappas The number of archetypes

method The method that will be used for computing initial approximation:

1. projected_convexhull, see find_outmost_projected_convexhull_points
2. convexhull, see find_outmost_convexhull_points

3. partitioned_convexhull, see find_outmost_partitioned_convexhull_points
4. furthestsum, see find_furthestsum_points

5. outmost, see find_outmost_points

6. random, a random set of kappas points will be used

rseed The random seed that will be used for setting initial A matrix. Useful for repro-
ducible results.

chvertices The vector of rows which represents the vertices for Convex Hull (if available)

plot If it is TRUE, then a panel of useful plots is created

... Other arguments to be passed to function archetypal, except save_history
which must always be TRUE

Details

If we take natural logarithms at the next approximate equation

ϵn+1 = cϵpn

for n = 1, 2, 3, . . ., then we’ll find

log(ϵn+1) = log(c) + p log(ϵn)

Thus a reasonable strategy for estimating order p and rate c is to perform a linear regression on above
errors, after a selected iteration. That is the output of order_estimation and rate_estimation.
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Value

A list with members:

1. SSE, a vector of all SSE from all AA iterations

2. SSE_lowess, a vector of LOWESS values for SSE

3. UIK_lowess, the UIK point [2] of SSE_lowess

4. aitken, a data frame of Aitken [3] extrapolation and error for SSE after UIK_lowess iteration

5. order_estimation, the last term in estimating order of convergence, page 56 of [4], by using
SSE after UIK_lowess iteration

6. rate_estimation, the last term in estimating rate of convergence, page 56 of [4], by using SSE
after UIK_lowess iteration

7. significance_estimations, a data frame with standard errors and statistical significance for es-
timations

8. used_on_convexhull, the % of used rows which lie on Convex Hull (if given), as a sequence
for iterations after UIK_lowess one

9. aligned_archetypes, the archetypes after UIK_lowess iteration are being aligned by using
align_archetypes_from_list. The history of archetypes creation.

10. solution_used, the AA output that has been used. Some times useful, especially for big data.

References

[1] Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Amer.
Statist. Assoc. 74, 829–836.

[2] Christopoulos, Demetris T., Introducing Unit Invariant Knee (UIK) As an Objective Choice
for Elbow Point in Multivariate Data Analysis Techniques (March 1, 2016). Available at SSRN:
http://dx.doi.org/10.2139/ssrn.3043076

[3] Aitken, A. "On Bernoulli’s numerical solution of algebraic equations", Proceedings of the Royal
Society of Edinburgh (1926) 46 pp. 289-305.

[4] Atkinson, K. E.,An Introduction to Numerical Analysis, Wiley & Sons,1989

See Also

check_Bmatrix

Examples

{
# Load data "wd2"
data(wd2)
ch = chull(wd2)
sa = study_AAconvergence(df = wd2, kappas = 3, rseed = 20191119,

verbose = FALSE, chvertices = ch)
names(sa)
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# [1] "SSE" "SSE_lowess" "UIK_lowess"
# [4] "aitken" "order_estimation" "rate_estimation"
# [7] "significance_estimations" "used_on_convexhull" "aligned_archetypes"
# [10] "solution_used"
# sse=sa$SSE
# ssel=sa$SSE_lowess
sa$UIK_lowess
# [1] 36
# sa$aitken
sa$order_estimation
# [1] 1.007674
sa$rate_estimation
# [1] 0.8277613
sa$significance_estimations
# estimation std.error t.value p.value
# log(c) -0.1890305 0.014658947 -12.89523 5.189172e-12
# p 1.0076743 0.001616482 623.37475 3.951042e-50
# sa$used_on_convexhull
# sa$aligned_archetypes
data.frame(sa$solution_used[c("SSE","varexpl","iterations","time")])
# SSE varexpl iterations time
# 1 1.717538 0.9993186 62 8.39
# Plot class "study_AAconvergence"
plot(sa)

}

summary.archetypal Summary for an object of the class archetypal.

Description

It gives a summary for the output of archetypal

Usage

## S3 method for class 'archetypal'
summary(object, ...)

Arguments

object An object of the class archetypal

... Other arguments (ignored)

Details

Next info is given:

1. the number of observations or the row number of the data frame
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2. the dimension of the data variables
3. the number of archetypes that was used
4. the computed archetypes
5. a vector of run details: SSE, VarianceExplained, Convergence, Iterations, EllapsedTime
6. the calling command

Examples

{
## Use the sample data "wd2"
data(wd2)
aa=archetypal(wd2, 3)
summary(aa)

}

wd2 2D data set for demonstration purposes

Description

A data frame of 100 2D points

Usage

data("wd2")

Format

matrix 100 x 2

Examples

# Creation of data set "wd2" from 3 corner-points:
p1 = c(1,2);p2 = c(3,5);p3 = c(7,3)
dp = rbind(p1,p2,p3);dp
set.seed(9102)
pts = t(sapply(1:100, function(i,dp){

cc = runif(3)
cc = cc/sum(cc)
colSums(dp*cc)

},dp))
df = data.frame(pts)
colnames(df) = c("x","y")
head(df)
# Check all equal:
data(wd2)
all.equal(wd2,df)
# [1] TRUE
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wd25 2D data set created by 5 points for demonstration purposes

Description

A data frame of 600 2D points

Usage

data("wd25")

Format

matrix 600 x 2

Examples

# Creation of data set "wd25" from 5 corner points:
set.seed(20191119)
p1 = c(3,2);p2 = c(4,6);p3 = c(7,8)
p4 = c(9,4);p5 = c(6,1)
dp = rbind(p1,p2,p3,p4,p5)
colnames(dp) = c('x','y')
pts=lapply(1:150, function(i,dp){

c0 = runif(dim(dp)[1]);c0 = c0/sum(c0);pt0 = colSums(dp*c0)
c1 = runif(3);c1 = c1/sum(c1);pt1 = colSums(dp[1:3,]*c1)
c2 = runif(3);c2 = c2/sum(c2);pt2 = colSums(dp[c(4,5,1),]*c2)
c3 = runif(3);c3 = c3/sum(c3);pt3 = colSums(dp[2:4,]*c3)
rbind(pt0,pt1,pt2,pt3)

},dp)
df = do.call(rbind,pts)
rownames(df) = 1:dim(df)[1]
head(df)
# Check all equal
data("wd25")
all.equal(df,wd25)
# [1] TRUE

wd3 3D data set for demonstration purposes

Description

A data frame of 100 3D points

Usage

data("wd3")
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Format

matrix 100 x 3

Examples

# Creation of data set "wd3" from 4 corner points:
p1 = c(3,0,0);p2 = c(0,5,0)
p3 = c(3,5,7);p4 = c(0,0,0)
# The data frame of generators
dp = data.frame(rbind(p1,p2,p3,p4))
colnames(dp) = c("x","y","z")
dp = dp[chull(dp),]
set.seed(9102)
df = data.frame(t(sapply(1:100, function(i,dp){

cc = runif(4)
cc = cc/sum(cc)
colSums(dp*cc)

},dp)))
colnames(df) = c("x","y","z")
head(df)
# Check all.equal to "wd3"
data(wd3)
all.equal(df,wd3)
# [1] TRUE
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