Package: inflection 1.3.6

inflection: Finds the Inflection Point of a Curve

Implementation of methods Extremum Surface Estimator (ESE) and Extremum Distance Estimator (EDE) to identify the inflection point of a curve . Christopoulos, DT (2014) <doi:10.48550/arXiv.1206.5478> . Christopoulos, DT (2016) <https://veltech.edu.in/wp-content/uploads/2016/04/Paper-04-2016.pdf> . Christopoulos, DT (2016) <doi:10.2139/ssrn.3043076> .

Authors:Demetris T. Christopoulos

inflection_1.3.6.tar.gz
inflection_1.3.6.zip(r-4.5)inflection_1.3.6.zip(r-4.4)inflection_1.3.6.zip(r-4.3)
inflection_1.3.6.tgz(r-4.4-any)inflection_1.3.6.tgz(r-4.3-any)
inflection_1.3.6.tar.gz(r-4.5-noble)inflection_1.3.6.tar.gz(r-4.4-noble)
inflection_1.3.6.tgz(r-4.4-emscripten)inflection_1.3.6.tgz(r-4.3-emscripten)
inflection.pdf |inflection.html
inflection/json (API)
NEWS

# Install 'inflection' in R:
install.packages('inflection', repos = c('https://dchristop.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • table_01 - Fisher-Pry sigmoid with total symmetry and no error
  • table_02 - Fisher-Pry sigmoid with total symmetry and error ~ U
  • table_03_04 - Fisher-Pry sigmoid with data left asymmetry and no error
  • table_05_06 - Fisher-Pry sigmoid with data left asymmetry and no error ~ U
  • table_08_09 - Gompertz non-symmetric sigmoid with no error
  • table_10_11 - Gompertz non-symmetric sigmoid with error ~ U
  • table_13 - A 3rd order polynomial with total symmetry and no error
  • table_14_15 - A 3rd order polynomial with total symmetry and error ~ U
  • table_17_18 - A 3rd order polynomial with data right symmetry and no error
  • table_19_20 - A 3rd order polynomial with data right symmetry and error ~ U

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

5.22 score 6 packages 50 scripts 1.2k downloads 12 exports 0 dependencies

Last updated 2 years agofrom:bb6bd17151. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:bedebesecheck_curved2uikedeedeciesefindipiterplotfindiplfindiplistlin2uik

Dependencies:

Developing methods for identifying the inflection point of a convex/concave curve

Rendered frominflectionDevelopingMethods.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2022-06-15
Started: 2019-06-28

Find inflection points: Mission Impossible!

Rendered frominflectionMissionImpossible.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2022-06-15
Started: 2019-06-28

Introduction to inflection package

Rendered frominflection.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2022-06-15
Started: 2019-06-28

Readme and manuals

Help Manual

Help pageTopics
Finds the Inflection Point of a Curveinflection-package inflection
Bisection Extremum Distance Estimator Methodbede
Bisection Extremum Surface Estimator Methodbese
Checks a curve and decides for its convexity typecheck_curve
Implementation of UIK method to the approximation for second order derivative of data pointsd2uik
The Extremum Distance Estimator (EDE) for finding the inflection point of a convex/concave curveede
An improved version of EDE that provides us with a Chebyshev confidence interval for inflection pointedeci
The Extremum Surface Estimator (ESE) for finding the inflection point of a convex/concave curveese
A function to show implementation of BESE and BEDE methods by plotting their iterative convergencefindipiterplot
Finds the s-left and s-right for a given internal point x[j]findipl
The Extremum Surface Estimator (ESE) and Extremum Distance Estimator (EDE) methods for finding the inflection point of a convex/concave curve.findiplist
Linear function defined from two planar points (x1,y1) and (x2,y2)lin2
Fisher-Pry sigmoid with total symmetry and no errortable_01
Fisher-Pry sigmoid with total symmetry and error ~ U(-0.5,0.05)table_02
Fisher-Pry sigmoid with data left asymmetry and no errortable_03_04
Fisher-Pry sigmoid with data left asymmetry and no error ~ U(-0.05,0.05)table_05_06
Gompertz non-symmetric sigmoid with no errortable_08_09
Gompertz non-symmetric sigmoid with error ~ U(-0.05,0.05)table_10_11
A 3rd order polynomial with total symmetry and no errortable_13
A 3rd order polynomial with total symmetry and error ~ U(-2,2)table_14_15
A 3rd order polynomial with data right symmetry and no errortable_17_18
A 3rd order polynomial with data right symmetry and error ~ U(-2,2)table_19_20
Implementation of Unit Invariant Knee (UIK) method for finding the knee point of a curveuik